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FOREWORD

This report is the result of a study on the numerical methods of solving large svstems

of linear algebraic equations involved in the juncture stress fields of multicellular

shell structures. Work on this study was performed by staff members of Lockheed
Missiles & Space Company in cooperation with the George C. Marshall Space I'light
Center of the National Aeronautics and Space Administration under Contract NAS 8-11450.

Contract technical representative was . Coldwater.

This volume is the first of a nine-volume final report of studies conducted by the
department of Solid Mechanics, Aerospace Sciences Laboratory, Lockheed Missiles &
Space Company. Project Manager was K. J. Forsberg; E. Y. W. Tsui was Technical

Director for the work.

The nine volumes of the final report have the following titles:

Vol. 1 Numerical Methods of Solving Large Matrices

Vol. II Stresses and Deformations of Fixed-Edge Segmental Cylindrical
Shells

Vol. III Stresses and Deformations of Fixed-Edge Segmental Conical Shells

Vol. IV Stresses and Deformations of Fixed-FEdge Segmental Spherical Shells

Vol. V Influence Coefficients of Segmental Shells

Vol. VI Analysis of Multicellular Propellant Pressure Vessels by the

Stiffness Method

Vol. VII Buckling Analysis of Segmental Orthotropic Cylinders Under Uniform
Stress Distribution

Vol. VIII  Buckling Analysis of Segmental Orthotropic Cylinders Under Non-
uniform Stress Distribution

Vol. IX Summary of Results and Recommendations

il
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\ SUMMARY

4945
This volume presents two basic numerical techniques for solving, bg{z digital computers,
large systems of algebraic simultancous equations resulting from the finite-difference
approximation of the partial differential equations of thin elastic shells. Of the methods
available for solving such systems of equations. the matrix factorization and two-line
successive over-relaxation methods have been discussed extensively. It is found that
the direct methods generally require more computer running time than the iterative
methods, especially when the size of the matrix is large. However, the former
methods permit rapidly varying mesh spacing which is desirable for the accurate
determination of the boundary-layer behavior of fixed-edge shell elements involved

g%uik&m

in multicellular pressure vessels.
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NOTATION

elements of A

nonsingular matrix

inverse of A

submatrices of A

column vector

complex matrix

diagonal matrix (submatrices)
error vector

flecomposed matrices of A
dummy indices

identity matrix

number of non-zero diagonals in A
elements of 1,

number of iterations

lower triangular matrix
convergent matrix

elements of R

upper triangular matrices

col@nn ve%tors
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p(A)

w opt

lcl

spectral radius of A
relaxation factor
optimum relaxation factor
eigenvalue

matrix norm of C
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Section 1

INTRODUCTION

Use of finite-difference expressions to approximate partial derivatives appearing in
the general shell equations has been deseribed elsewhere.* This method reduces the

rolution of the partial differential equations to the solution of a linear equation system:
AX B (1. 1)

When A is nonsingular, a unique solution vector X exists and can. in principle. be
computed by one of several well-known methods such as Gaussian elimination. In
practice, however. the equation svstem. Fq. (1. 1), hecomes so large that the usual

methods can no longer be applied without modification.

For example, if a shell segment is covered with a {inite difference mesh of 30 rows
and 30 columns, the resulting svstem will contain 2700 equations since there are 3
dependent variables u, v, and w at each station. The full matrix A would then
contain 7,290 000 elements, Clearly the storage requirements and execution time
involved in manipulating all of these elements is prohibitive, even for present digital
computers. Thus, only methods which avoid genevating a full matrix with the dimen-

sions of A can be considered.

Before discussing the methods which ean be utilized to obtain a solution of Eq. (1. 1),

it is important to ohserve the special "handed” form which the matrix A can be given.
For example. \\;wn the differential cquations can be reduced to a set of ordinary differ-
ential equations, the natural ordering of equations and unknowns produces a svstem in

which non-zero elements in a given row (equation) occur only on the main diagonal and

*"Investigation of Juncture Stress Fields in Multicellular Shell Structures,"” by
E. Y. W. Tsui, F. A, Brogan. J. M Massard, P. Stern, and C. E. Stuhlman.
Technical Report M-03-63-1, lLockheed Missiles & Space Company, Sunnyvale, Calif.,
Feb 1964 — NASA CR-61050.
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in a limited number of columns preceding or following the main diagonal. The number
of such non-zero diagonals, k. is then a function of the number of dependent variables
and the tyvpe of finite-difference expressions selected, but is independent of the number
of mesh stations. The situation is fundamentally different with finite-difference repre-
sentations of partial differential equations.  The coupling of the dependent variables in
both independent variable directions makes the number of non-zero diagonals dependent
on the mesh size. However. since coupling is generally confined to one or two mesh
rows in either direction, the system can still be formed so that the number of non-zero
diagonals on either side of the main diagonal is small compared to the total numher of
diagonals in A. The feasibility of hoth the direct methods and the so-called block
iterative methods is dependent on the "handed” form of A. For the direct methods,
the number of elements which are involved in arithmetic computations can be reduced
to the number of elements appearing in the set of non-zero diagonals of A, The situa-
tion with respect to iterative methods is more complex and will be treated in detail in
8ec. 3. However, it turns out that all of the useful iterative methods also require a
highly banded matrix A for efficient execution. Several particular methods for obtain-

ing a strongly banded matrix A will be described in Secs. 2 and 3.
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Section 2

DIRECT METHODS

Most feasible direct methods for the solution of large systems, AX = B, are based
on some type of factorization. Tt is shown in standard works on matrix theory that any
nonsingular matrix A can be represented after permutation of the rows as the product

of a lower triangular and an upper triangular matrix (Ref. 1)

A IR (2. 1)

When such a factorization has been obtained. the equation, AX = B, can be solved

easily in two steps. First consider the equation
1.7 B (2.2)

Since 1. is nonsingular and lower triangular. this can be solved for the auxiliary

vector 7 in one''sweep"

. / v
/,] ”l'l'l.l (2.32)
Zy By <Ly 2L, (2.3b)
i-1
'l - 4 'l I‘. N o
/i B, z li_i/j i (2.3c)
i1
Bimilarly. the equation
RX - 7Z (2. 4)
3
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can be solved in a single ""back sweep"

X, o= /Jn/Rn.n (2.5a)
xn-l (Zn—l R l.nxn)/Rn—l,n-l (2.5b)
n
X, 7. - Z ReX R (2.5¢)
j it

Now combining Fqgs. (2.2) and (2.4), we have
AX LRX 1.2 B (2. 6)

From the form of the recursions. Fgs. (2.3) and (2.5). it is evident that no additional
storage is needed to obtain the solution vector X bevond that required by the non-zero
diagonals in I, and R. There are various methods for obtaining a factorization of A
and also many distinct representations of A as a product of two matrices. Conse-
quently. there are a number of possible direct methods for solving the system, AX - B,

among which a few are particularly suited to strongly banded matrices.
2.1 MATRIX FACTORIZATION
et A bean n by n nonsingular matrix and assume A - LR where L is lower

triangular and R is upper triangular. By the definition of matrix multiplication, the

elements of A are given by

N Z SR (2.7)
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If 5 = minimum of i and j, then since 1. is lower triangular and R is upper

triangular,

“i‘j z (i.krk.j (2.8)

Now, the elements of I, and R can be computed recursively, using Eq. (2.8)

Set rl. | 1 (2.9a)
then
e Nn (290
The remaining elements in Column 1 and Row 1 can then he obtained if ﬂl. 17 0.
(i. : :li. 1 (2.9c¢)
rl.j ”l.j/f] | (2. 9d)
Choosing T, o 1 vields
oo Mo T T (2. 9e)

If 02 9 = (), the elements of Column 2 and Row 2 can he found.

(2.91)

. , - .
2. 2. " "2t e (2.9g)

N
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Or in general, if r, ., = 1

i, i
i-1
T M E KTk |
k-1
andif ¢, ., - 0
1.1
i-1
A, - 0. , :
G, i i Z iK'k i 1< j
k|
i-1
S\ 2 SRR VAR i< (2. 9h)
k 1

When the scheme given by the Eqgs. (2.9) is carried out. the matrix R is unit upper
triangular. The nonsingular character of A insures that the rows of A can always

he permuted in such a manner that fi P 0. Yono
2. 1.1 Factorization of Banded Matrices

The general procedure for factoring a matrix desceribed in the preceding paragraph
can be applied in several ways to the solution of banded matrices. As a concrete
example to clarify the situation. suppose A is a 10 by 10 matrix with two non-zero

diagonals on either side of the main diagonat as shown below:

[ « < H “ ( 1
o M2 Y )
H H : (
Ny gy My gty g Y 0
: : H : : _ 0
5.1 M2 3.3 Mg M35 0
A 0 0
3. 10
49,10
) a a a
| 10.8 10,9 10,10 |
6
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Applying Eqs. (2.9) to find ¢ and r gives

4.1 1.4
f4' ) :14 1 ]
v Mg/ 0
Also
5.0 5.0 0 Ty 00 =0

If no permutation of A is required, it is not difficult to see that L and R each con-

tain only three non-zero diagonals.

Pf -
1.1 0 0
by
{,
L 3 (2. 102)
(4] 0
0 0
10.8 109 ”10,1@
1 1
po "py 0 0
() 1
"on Toyg o
R 0 (2. 10b)
'y 8
"5.10
L O ' 0 ] ]

Thus to obtain the factorization A LR . it is only necessary to provide storage for
five non-zero diagonals since the elements on the main diagonal of R are all 1.0.
Even more significant is the fact that far fewer operations are required to form L

and R than would be the case if A were not banded. In general. for any banded
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matrix A with k non-zero diagonals on either side of the main diagonal, a factoriza-
tlon A - LR can be obtained where 1. and R each contain only k non-zero diagonals.
For example, iterative methods described in Sece. 3 involve the repeated solution of a
linear syvstem AX Y for different Y vectors, where A contains 27 non-zero
diagonals and up to 180 rows. The factorization described here requires the manipula-
tion of only 4. 860 elements as compared with 32,400 elements for a matrix inversion.
One disadvantage of factorization occurs when some 0 Row i must then

be interchanged with some later row to avoid this possi.hilit_v. However, the matrices
I, and R may then contain more than k non-zero diagonals. Fortunately, this sel-
dom occurs in practice and can usually be overcome at the expense of only one or two
additional diagonals. More serious is the loss of accuracy which may develop if some
[i i is verv smallin comparison with other diagonal elements.  The best remedy again
is to find the least extensive permutation which will produce a larger term. The exist-
ence of such difficulties cannot normally be predicted in advance and may not be easy

to diagnose. In case A is positive definite it has been shown that no permutation of A

{8 needed either to prevent some (i i 0. or to avoid numerical inaccuracy (Ref. 1),

In developing the formulas for factorization, Fgs. (2.9). the choice vy 1 is arbi-

trary and primarily a matter of convenience. Other choices are possible and will

produce slightly different factorizations.  For example, L and t’i ; can he chosen

to be equal in absolute value. If A is positive definite. and I‘i ; - ﬂi i then R is
the transpose of 1. and the computational effort and storage requirements can be cut

in half.
2.1.2 Factorization of Partitioned Matrices

Suppose the matrix A is nonsingular and has the following partitioned form where each

submatrix Ai i is nm by n. i 1.m.j 1.m.

[ ]
A1 1 Al.z Al m
A A A
‘ 9
t A 2.1 2.2 2.m (2. 11)
A A
| m. 1 m, m
8
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The multiplication of partitioned matrices satisfies exactly the same rule as the multi-
plication of ordinary matrices. Furthermore, all of the laws of arithmetic used in
deriving the factorization formulas also hold for the addition and multiplication of
matrices. Hence, the partitioned matrix A can also be expressed as the product of

lower triangular and upper triangular partitioned matrices.

A - LR (2. 12a)
Ri P 1 (2. 12b)
i-1
L] - Ai.l - Li.knk,i (2. 12¢)
k1
i-1
l'j.i - Aj.i - Z l'j.k“k.i (2. 124)
k-1
i-1
3 -1
Ri.j - I‘i.iAi.j - z l'i.knk.j (2. 12¢)
k-1

where 1 is the identity matrix.

The requirement that 01. P 0 is replaced here by the requirement that L‘,i be
nonsingular so that an inverse I'i—.li exists.  As with the computational scheme

[Egs. (2.9)]. Egs. (2.12) must be carried out in the proper order so that the matrices
on the right side of an equation will already have been computed when needed. If the
terms appearing in E¢s. (2.3) and (2.5) are understood to denote submatrices instead
of elements. the representation of A as the product of partitioned matrices L and R
can also be used to solve the equation AX - B. Furthermore, if the matrix A con-

taine k non-zero diagonal blocks on either side of the main diagonal of submatrices,

LOCKHEED MISSILES & SPACE COMPANY



then the matrices I, and R will each contain just k non-zero diagonals. Thus
block factorization applied to banded matrices achieves computational and storage
savings comparable to those obtained hv ordinary matrix factorization. Factoring

the matrix A in partitioned form alsohelps to simplify the logical organization of the
computational and storage activities required for really large systems. A final
advantage derives from the fact that the problem of avoiding small diagonal elements
Ei,i is greatly reduced. Since the inverses of the submatrices Li, i required by
Egs. (2. 12). are in general full matrices, there is no loss of efficiency in permitting
a full pivotal search while performing the inversion. Consequently block factorization
can be expected to exhibit greater numerical stability than ordinary factorization with-

out a pivot search.
2.2 APPLICATIONS OF DIRECT METHODS TO FINITE-DIFFERENCE SYSTEMS

Suppose a rectangular region has been covered with a set of horizontal and vertical

lines forming the mesh as indicated in the accompanying figure:

Let
AX B (2. 13)

be the linear equation system obtained by approximating the partial differential equa-

tions with finite-difference operators at each of the mesh points. The ordering

10
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of points given above is perhaps the most natural one to select and leads to a
partitioning of A which is strongly banded. The highest derivatives occurring in the
general shell equations are fourth order. The finite-difference expressions used for
these derivatives at a given line are coupled to at most the two preceding and two
following mesh lines. Thus, writing the finite-difference equations in the same order

as the mesh points in the figure. a '""block 5-diagonal partitioning of A is obtained:

A1. 1 A1,2 A1‘3 0 0 1
Az.l A2.2
A
A = 3.1 (2. 14).
0 m-2,m
m-1.m

0 0 A A

L m. m-2 m.m-1 m. m J

With three unknowns at each station. the submatrices Ai i developed for this particu-
lar example each have 18 rows and 18 columns. By appl_vfng Egs. (2.12). a block
factorization is obtained where each 1. and R contain just three non-zero block

diagonals:

A - LR (2. 15)

The main diagonal of R consists of identity matrices. A closer inspection of

Eq. (2. 12d) shows that the leftmost non-zero block diagonal of L is identical with
the corresponding diagonal of A . This is 2 consequence of choosing Ri.i = 1 and
holds generally for any block factorization carried out in accordance with Fgs. (2. 12).
The formulas, Egs. (2. 12) and (2.6), used to solve the equation AX - B can be con-
veniently arranged in a recursive scheme. This has been described in detail in a
previous report.* The computer program developed in accordance with this procedure

can handle as many as 4300 equations. In this case each submatrix Ai i is 72 by 72

*'Investigation of Juncture Stress Fields in Multicellular Shell Structures,” by
E. Y. W. Tsui. F. A. Brogan. J. M. Massard, P. Stern, and C. E. Stuhlman,
Technical Report M-03-63-1, Lockheed Missiles & Space Company, Sunnyvale, Calif.,
Feb 1964 — NASA CR-61050.
11
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and m = 60 . Then the full matrix A containg 60 block diagonals of which only the
central five contain non-zero elements. Exceution times on the IBM 7094 for different

mesh sizes ave presented in Table 1 (see Sece. 3).

A sccond possible ordering of the mesh stations is the two-line ordering considered

in detail in Sec. 3. This leads to a partitioned matrix A with 3 non-zero block
diagonals, referred to in the literature as block tri-diagonal form. The factorization
formulas, Egs. (2.12). then produce matrices [, and R with just two non-zero block
diagonals. The resulting recursive formulas for solving AX = B are quite simple in
form for this special case and have been deseribed by several authors (Ref. 2). How-
ever, the diagonal submatrices which must be inverted now contain four times as many
clements as the submatrices of the 5-diagonal form. Eq. (2. 14). The storage problems
presented by the block tri-diagonal form are also very difficult. Consequently the
block 5- diagonal factorization has heen considered a more efficient method for solving
the finite-difference equation systems generated by fourth-order partial differential

equations.

Matrix {actorization provides an efficient method for obtaining the determinant of

banded matrices. Suppose a nonsingular matrix A has been factored by means of

A IR (2. 16)

where Loois lower triangular and R isunit upper triangular.  From the properties

of determinants, it can be shown (Ref. 5) that:
Det (A)  Det (1) Det (R) (2.17)

Furthermore, the determinant of o triangular matrix is simply the product of the
elements on the main diagonal. The situation with respect to factored partitioned
matrices is very similar since Eqg. (2.17) is still valid.  The determinant of a parti-
tioned triangular matrix is also easily computed by multiplying the determinants of

the submatrices on the main diagonal.

LOCKHEED MISSILES & SPACE COMPANY



Section 3

TWO-LINE ITERATIVE METHODS

Several cyclic iterative methods have recently been developed for solving linear equa-
tion systems generated by finite-difference approximations to boundary value problems.
One familiar method closely related to Southwell's "relaxation' technique is the Gauss-

Seidel iteration for the system AX - B (Ref. 3):

i-1 k
X(nﬂ) SR Z a, .X(.nH) k z a, .‘\,?n) - b, 1=i-k;n=0 (3.1)
i s L Ll 1
R R )il

The use of this method requires that the diagonal elements .y 0. In fact, reason-
ably rapid convergence can be expected only if A is strongly diagonally dominant.
Since many boundary value problems do not lead to diagonally dominant matrices, it
has been necessary to develop more complicated "block™ iterative methods. Such
methods are obtained by considering partitioned forms of the matrix A and utilizing
submatrices or blocks in place ot elements in the iteration formulas. When the
matrix A is partitioned according to Eq. (2.13). the method is cailed a one-line
block iteration since the submatrices of A correspond to sets of finite-difference
equations along one line of mesh points. Unfortunately. it has been found that point
and one-line block methods are not efficient for solving the simple but closely related
problem of a rectangular plate (Ref. 4). Consequently, several two-line block itera-
tion methods are investigated and computer programs developed for the static analysis
of shell segments. The following paragraphs describe the particular methods used

and discuss the computational techniques required for efficient program execution.

13
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3.1 GAUSS-SEIDEL BLOCK ITERATION

The methods discussed in this section will be applied to the solution of two-dimensional
finite-difference systems. A typical mesh for a shell segment is shown in the

accompanying diagram:

A two-line block method requires an ordering of the dependent variables and the differ-
ence ecquations in accordance with the numbering in the diagram. The resulting matrix
A may then be partitioned with each submatrix corresponding to two complete lines of
the mesh. From the form of the finite-difference expressions such as those described
in Sec. 3 of Vols. I1, HI. and IV, it is readily scen that a derivative on either line of a
pair of lines will not require references to stations beyond the preceding or following
pair of mesh lines. Thus, the matrix A will be partitioned in "tri-diagonal block"

form as follows:

I)1 U] 0 0 W
4 ]
]2 I)2 l2
0
A - 0 (3.2)
Um-l
L0 0 1. D
m m
14
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The particular mesh of the diagram, for example, leads to a matrix A with m = 3.
Each of the three diagonal submatrices D1 . Dz. and D,3 then has 30 rows and 30
columns since there are 3 unknowns and 3 equations at each station,

In order to describe various (two-line) iterative methods and to discuss their conver-

gence properties, it is convenient to first define a decomposition of A.

With A partitioned as in Fq. 3.2, let

. - r - r -
0 0 D1 0 0 U1 0
I,H) 0 0 D2 0 U2
L- 0 L3 D - 0 U = Um—l
0 L 0 0 0 D 0 0
m | m
L ] . ! 4

Thus A = L+D+ U.

The form of Gauss-Seidel block iteration is heuristically suggested by rearranging

the matrix equation AX - B into the form:
(b + )X - -UX + B
The iteration can then be defined by

xD o p oy lex™ v oo+ oyl (3.3)

In view of the block tri-diagonal form of A this can be arranged as follows:

Dix(i“”) R

(n)
Xy - Uix, + B, (3. 4)

i+1
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Hence, for each complete iteration. a subsidiary linear system of the form

-(n+1 . . . .
nixg ) - 7,i must be solved m times. presumably by direct methods. The feasi-
bility of block iteration thus depends on the ease with which such systems can be

solved and furthermore requires that each diagonal submatrix Di be nonsingular.
3.2 SUCCESSIVE OVER-RELAXATION

The successive over-relaxation method (SOR) is a natural extension of the Gauss-Seidel
iteration,

n .
(n) ) 16 a new

(n+1)

. . . n+1
[et X be the previousiy computed iteration vector and suppose Z(

vector obtained by Gauss Scidel iteration  'he SOR iteration vector X is defined
by

(n+1)

KDy -xM e (3.5)

where w s called the relaxation factor.  Combining Fq. (3.5) with Eq. (3.4) and

(n+1)

eliminating 7 gives

nt )

DX An+ )
i

.(n) ] {n)
. . _ 7 E E -
N l,ixi_‘ { i'\i+] + Bi (1 w)DiXi (3. 6)

Clearly. this reduces to Gauss-Seidel iteration when « - 1. The iteration is formally

defined by

™MD e e 0 s o™ e o+ oy o (3.7)

3.3 GENERAL CONVERGENCE PROPERTIES

The iterative methods described here can be considered as special cases of a general
iteration scheme based on a decomposition of the matrix A. Suppose A = F + G

where [ is nonsingular.

16
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Then the equation AX - B implies

X -GX + B
or
. -1 -1
X -F GX + F B (3.8)
Defining M = - l’_](}. Eq. (3.8) leads to an iteration of the following form:
M ™ p Tl (3.9)

. .(n)
Next define a sequence of error vectors la( by

Mok

Noting from Eq. (3.8) that ¥ 1]3 X - MX . we may write

M) x0Ty xsmx™ o x e mx = mx - XM
or
DM (o) (3. 10)

)

. . . . . . n_(o
Thus the iteration converges to the solution X if and only if M F,( = 0. n—= o,

[he iteration will converge for an arbitrary starting vector X( ) if and only if
M" < :
" -0 n -~ M isthen called a convergent matrix.

If C is any complex matrix with eigenvalues A where j)\lt = ]7\2] cee T i)\n] .

then p(C) - ’,All is called the spectral radius of C (a circle of radius p(C) contains

17
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all the cigenvalues of C). Two uscful theorems connecting convergence with the

spectral radius are (Ref. 2) as follows:
Theorem 1. A complex matrix C is convergent if and only if p(C) < 1.

Theorem 2. If I C|, denotes the matrix norm* of a complex matrix C, then

n Vn .
qC = n(C)

By Theorem 1. the iteration defined by K. (3.9) is convergent for an arbitrary start-

ing vector X(O) if and only if (M) - 1.

Theorem 2 provides more precise information concerning the reduction in the error
4

vectors. Using the properties of matrix norms gives

LR MR < MYy . n=0 (3.11)

Thus for sufficiently large n. we have

‘:(n)‘\ ) n o (;)T\T)nygﬁ(”)it

tHlence p(M) is approximately the factor by which the error is reduced at each

iteration.

For certain problems. it can be proved in advance that p(M) <« 1 and therefore that
the iteration converges. Unfortunately there are in general no simple methods for
obtaining sharp upper bounds for p(M)  The analyst must therefore be guided pri-
marily by experience in estimating whether iteration can be used effectively. It should

be noted, however, that when a program to carry out the iteration, Eq. (3.9), has been

*The matrix norm may be defined as the last upper bound of the set of positive numbers
. r (Ref. 5) such that for some vector Y. [1Y}!| - 1 and ¢ - i[1AY]] .

18
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prepared, a rather simple modification will permit the calculation of p(M). By
setting B - 0 in Eq. (3.9). the iteration becomes the well-known power method
(Ref. 1) for obtaining the dominant eigenvector of M. Of course, this procedure will

require a computational effort comparable to carrving out the full iteration, Eq. (3.9).
3.4 CONVERGENCE RATES
Let A = L+ D+ U be the block tri-dingonal matrix defined in Eq. (3.1). Let

M (L + I))-lU (3. 12)

M1 is the Gauss-Seidel two-line iteration matrix for A .

The two-line SOR iteration is based on the decomposition A - F + G where

B u"n v,

-1
G (M- o« b+ U
Then the two-line SOR iteration matrix is defined by

-1 _ -
M -{ D+ L L)I(l - 1)D U] (3.13)

Although the actual values ol p(M ]) and ;)(.\lw ) cannot be explicitly calculated, the
convergence properties can be compared.  Henceforth it will be assumed that

T > will exist ¢ oW SUC : S = /
p(Ml) < 1. hen, there will exist a4 number opt such that p(xlwopt) p(Mw) for
0 - w - 2. I all the eigenvalues ol I\I] are positive, and A is block tri-diagonal

as in Eq. (3. 1), it has been shown (Ref. 2) that the optimum relaxation factor is given by

(3. 14)
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Furthermore, in this case

p<Mw0m) Copt " 1 (3. 15)

If p(Ml) is close to 1.0 as frequently happens for large problems, the SOR iteration

is much more efficient. VFor example, if /)(M]) 0.99 then wopt = 1.818 and
p(Mwopt)i 0.818

0(
0. 991 . 0. 3664

| -
(),H]Hl ) 0. 188 ~ 10 B

Hence 100 iterations of the Gauss -Seidel type would only reduce the starting error hy
a factor of 0.3664, while the SOR would evidently have converged in much less than
100 iterations. One drawback to the SOR iteration is the fact that the value of p(Ml)

is necded in order to compute ot if no estimates are available, p(M,) can be

pt
obtained from the SOR iteration by setting w I and B 0.

1

Values of p(M 1) for a cvlindrical shell segment with fixed boundaries are presented

in Table 1.
3.5 COMPUTATIONATL TECHNIQUES

As indicated in Seces. 3.2 and 3.3, the two-line iteration methods under consideration

. . ‘ - . -(n+1)
require the solution of m subsidiary linear systems, [)i,\ g

Zi‘ for each itera-
tion. If a mesh with 20 rows and 20 columns is selected, m is 10 and each submatrix
Di has 120 rows and 120 columns. Obviously, to obtain these solutions by the usual
methods of Gaussian elimination would be impractical both from the standpoint of
computer storage requirements and execution time. Fortunately, the special form

of the submatrices I)i permits an efficient direct solution of these linear systems.

20
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A detailed examination of the finite difference svstem derived from the governing
partial differential equations, together with the ordering of discrete variables des-
cribed in Sece. 3. 1. shows that all the non-zero elements of Di are contained in 27
consccutive diagonals. These 27 diagonals have 3240 elements as compared with
14,400 elements in the full submatrix. Since the D, do not change throughout the

- i « . n+
iteration, theyv can be factored once and the solution of I)iX( D

Zi can then be
easily obtained from the factored torm of ”i‘ Sce Sec. 2 for a discussion of this
method. It is important to notice that for the problems under consideration, the Di
are not all distinct. This occurs hecause the differential equations for cylindrical,
conical, or spherical shell segments have coefficients which are functions of at most
one of the independent variables. Thus only three distinct submatrices Di are
required to reflect the interior and boundary blocks. Similarly, each of the off-
diagonal submatrices ['i and Ui contains only 25 non-zero diagonals and most of

these submatrices are identical.
3.6 PROGRAM OPTIMIZATION

A Tortran language computer program based on the methods previously outlined

was developed to carry out the two-line SOR iteration. Thus for a 20 by 20 mesh,

each iteration required the solution of subsidiary svstems Dixi 7,i L1 1010,

The primary effort in forming cach Zi consisted in multiplving a matrix with 120 rows
and 77 non-zero diagonals by o vector. The factored form of Di involved 120 rows
and 27 diagonals. The convergence rates obtained were quite satisfactory. Iowever,
the program execution time was similar to that for the direct method as described in
Sec. 2. A close study of the computer program revealed that a major portion of the

time for each iteration was consumed in the multiplication of the submatrices I,i LD

i
(n - :
and Ui by the vector Xg ). Although only the minimum possible number of non-zero

diagonals were actually used. these diagonals still contained many more zero elements
than non-zero elements.  IHence program efficiency required the elimination of as
many of these "useless" multiplications as possible. This was accomplished by setting

up an auxiliary address array for each distincet equation type and each submatrix. This

| AN/~ e, e —



array indicated the number of each unknown appearing in an equation relative to that
equation number. Thus only the coefficients of these unknowns were stored, elimi-
nating most of the zero elements. The multiplication of the matrix by the vector X(n)
could then be conveniently carried out by utilizing simultaneously the indirect address-
ing and address modification features available on the IBM 7094, The storage require-
ment of 9240 cells for 120 rows and 77 diagonals was reduced to 2120 cells. Although
the programming work involved was rather substantial. the effort was repaid with a
four-fold improvement in execution time. In addition, the size of the finite-difference
mesh which could be treated without undue use of auxiliary tape storage was substan-
tially increased. Sample execution times for the direct method and the revised itera-

tive method are presented in Toble 1.

Table 1

SOLUTION OF A CYLINDRICAL SHELL SEGMENT

Number . Number Time by Time by
Spectral . .
of Radius of Iteration  Direct
Equations ‘ ) Iterations (min) (min)
190 0. 8R5 14 0.35 0.75
300 0. 940 20 0.65 1.1
600 0.975 27 0.9 3.0
1200 0. 9896 37 2.2 12.0
1728 0.9935 46 4.5 24.0
22
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Section 4

DISCUSSION

Both direct and two-line successive over-relaxation iteration methods have been used
to solve the boundary value problems of segmental shells. Table 1 shows the compari-

son of results obtained by these two methods.

From Table 1 it is apparent that as far as the computer (IBM 7094) running time is
concerned the iterative method is more favorable than the direct method. Several
qualifications should be noted, however. First, the iterative method has only been
developed for uniform mesh spacing while the direct method permits rapid changes

in spacing near the boundary which are desirable for the accurate determination of the
boundary-layer bending characteristics of shell segments. Unfortunately, as pointed
out by Varga. rapid changes in mesh spacings have a disastrous effect on the spectral
radius of the iteration matrix (Ref. 2). Second, since the direct method obtains a
factorization of the matrix A . it is possible to solve the svstem AX = B for many
different B vectors at very little additional cost. This {act is utilized for the rapid
determination of influence coefficients required in the study of juncture stress fields.
Besides the methods already mentioned. a semi-iterative method using Chebyshev
polynomials has also been investigated in the present work, and results compared
with those obtained by SOR iteration. The SOR method converged in ~ 207 fewer
iterations than the Chebyshev semi-iterative method.  Such convergence indicates

that the relaxation factor used in SOR iteration was close to optimum (Ref. 2).

Another class of iterative methods, generally referred to as "alternating direction
block methods," has been developed in recent vears to solve the boundary value
problems for eclliptic partial differential cquations (Ref. 2). These methods entail a
rather complex iteration procedure which is justified by a more rapid convergence rate

for certain specific cases. While the two-line SOR iteration is quite successful for
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moderate mesh sizes. the number of iterations required for a rectangular mesh with
m rows and m columns is roughlv proportional to m. The number of iterations
used by a typical alternating direction method with four iteration parameters, for
example, isproportional to ml/4 (Ref. 6). Because of the greater computational”
effort required for one complete iteration of the alternating direction method, the
two-line SOR method has been found more cfficient for small meshes. A cross-over
point generally occurs at meshes of moderate size. The alternating direction methods
are then significantly faster for large meshes. However, it should be noted that the
results described here are for second-order elliptic partial differential equations. No
work providing a general theoretical background for equations general enough to
include the shell equations has been reported. The central idea of the alternating
direction methods is to decompose the finite-difference equations A into two sets H
and V. This is done in such a way that only  H has coupling in the horizontal direc-
tion and only V has coupling in the vertical direction. Then one complete iteration
requires two stages. one in which a linear system H7 . - Y is solved by direet

1 1

methods and a sccond in which another system VZ2 Y, is solved. Thus one is

<

alternately solving in horizontal and vertical directions.  Intuitively, one expects that
some similar technique could be quite cfficient for the general shell equations. Efforts
to develop such methods may be necessary to handle the large mesh sizes which are

often desirable and with which the computers of the immediate future will be able to cope.
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